Source code for obspy.imaging.cm

# -*- coding: utf-8 -*-
"""
Module for ObsPy's default colormaps.

Overview of provided colormaps:
===============================

The following colormaps can be imported like..

    >>> from obspy.imaging.cm import viridis_r

List of all colormaps:

    * `viridis`_
    * `viridis_r`_
    * `viridis_white`_
    * `viridis_white_r`_
    * obspy_sequential (alias for `viridis`_)
    * obspy_sequential_r (alias for `viridis_r`_)
    * obspy_divergent (alias for matplotlib's RdBu_r)
    * obspy_divergent_r (alias for matplotlib's RdBu)
    * `pqlx`_

.. plot::

    from obspy.imaging.cm import _colormap_plot_overview
    _colormap_plot_overview()

viridis
-------

"viridis" is matplotlib's new default colormap from version 2.0 onwards and is
based on a design by Eric Firing (@efiring, see
http://thread.gmane.org/gmane.comp.python.matplotlib.devel/13522/focus=13542).

    >>> from obspy.imaging.cm import viridis

.. plot::

    from obspy.imaging.cm import viridis as cmap
    from obspy.imaging.cm import _colormap_plot_cwt as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis as cmap
    from obspy.imaging.cm import _colormap_plot_array_response as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis as cmap
    from obspy.imaging.cm import _colormap_plot_ppsd as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis as cmap
    from obspy.imaging.cm import _colormap_plot_similarity as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis as cmap
    from obspy.imaging.cm import _colormap_plot_beamforming_time as plot
    plot([cmap])

viridis_r
---------

Reversed version of viridis.

    >>> from obspy.imaging.cm import viridis_r

.. plot::

    from obspy.imaging.cm import viridis_r as cmap
    from obspy.imaging.cm import _colormap_plot_cwt as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_r as cmap
    from obspy.imaging.cm import _colormap_plot_array_response as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_r as cmap
    from obspy.imaging.cm import _colormap_plot_ppsd as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_r as cmap
    from obspy.imaging.cm import _colormap_plot_similarity as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_r as cmap
    from obspy.imaging.cm import _colormap_plot_beamforming_time as plot
    plot([cmap])

viridis_white
-------------

"viridis_white" is a modified version of "viridis" that goes to white instead
of yellow in the end. Although it remains perceptually uniform, the light
colors are a bit more difficult to distinguish than yellow in the original
viridis. It is useful for printing because one end of the colorbar can merge
with a white background (by M Meschede).

    >>> from obspy.imaging.cm import viridis_white

.. plot::

    from obspy.imaging.cm import viridis_white as cmap
    from obspy.imaging.cm import _colormap_plot_cwt as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white as cmap
    from obspy.imaging.cm import _colormap_plot_array_response as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white as cmap
    from obspy.imaging.cm import _colormap_plot_ppsd as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white as cmap
    from obspy.imaging.cm import _colormap_plot_similarity as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white as cmap
    from obspy.imaging.cm import _colormap_plot_beamforming_time as plot
    plot([cmap])

viridis_white_r
---------------

Reversed version of viridis_white.

    >>> from obspy.imaging.cm import viridis_white_r

.. plot::

    from obspy.imaging.cm import viridis_white_r as cmap
    from obspy.imaging.cm import _colormap_plot_cwt as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white_r as cmap
    from obspy.imaging.cm import _colormap_plot_array_response as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white_r as cmap
    from obspy.imaging.cm import _colormap_plot_ppsd as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white_r as cmap
    from obspy.imaging.cm import _colormap_plot_similarity as plot
    plot([cmap])

.. plot::

    from obspy.imaging.cm import viridis_white_r as cmap
    from obspy.imaging.cm import _colormap_plot_beamforming_time as plot
    plot([cmap])

pqlx
----

Colormap defined and used in PQLX (see [McNamara2004]_).

    >>> from obspy.imaging.cm import pqlx

.. plot::

    from obspy.imaging.cm import pqlx as cmap
    from obspy.imaging.cm import _colormap_plot_ppsd as plot
    plot([cmap])

:copyright:
    The ObsPy Development Team (devs@obspy.org)
:license:
    GNU Lesser General Public License, Version 3
    (https://www.gnu.org/copyleft/lesser.html)
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from future.builtins import *  # NOQA @UnusedWildImport

import glob
import inspect
import os

import numpy as np
from matplotlib.cm import get_cmap
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.colors import ListedColormap


[docs]def _get_cmap(file_name, lut=None, reverse=False): """ Load a :class:`~matplotlib.colors.LinearSegmentedColormap` from `segmentdata` dictionary saved as numpy compressed binary data. :type file_name: str :param file_name: Name of colormap to load, same as filename in `obspy/imaging/data`. The type of colormap data is determined from the extension: .npz assumes the file contains colorbar segments (segmented colormap). '*.npy' assumes the file contains a simple array of RGB values with size [ncolors, 3]. :type lut: int :param lut: Specifies the number of discrete color values in the segmented colormap. Only used for segmented colormap `None` to use matplotlib default value (continuous colormap). :type reverse: bool :param reverse: Whether to return the specified colormap reverted. :rtype: :class:`~matplotlib.colors.LinearSegmentedColormap` """ file_name = file_name.strip() name, suffix = os.path.splitext(file_name) directory = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) directory = os.path.join(directory, "data") full_path = os.path.join(directory, file_name) # check if it is npz -> segmented colormap or npy -> listed colormap # do it like matplotlib, append "_r" to reverted versions if reverse: name += "_r" if suffix == '.npz': # segmented colormap data = dict(np.load(full_path)) if reverse: data_r = {} for key, val in data.items(): # copied from matplotlib source, # cm.py@f7a578656abc2b2c13 line 47 data_r[key] = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)] data = data_r kwargs = lut and {"N": lut} or {} cmap = LinearSegmentedColormap(name=name, segmentdata=data, **kwargs) elif suffix == '.npy': # listed colormap data = np.load(full_path) if reverse: data = data[::-1] cmap = ListedColormap(data, name=name) else: raise ValueError('file suffix {} not recognized.'.format(suffix)) return cmap
[docs]def _get_all_cmaps(): """ Return all colormaps in "obspy/imaging/data" directory, including reversed versions. :rtype: dict """ cmaps = {} cm_file_pattern = os.path.join( os.path.abspath(os.path.dirname( inspect.getfile(inspect.currentframe()))), "data", "*.np[yz]") for filename in glob.glob(cm_file_pattern): filename = os.path.basename(filename) for reverse in (True, False): # don't add a reversed version for PQLX colormap if filename == "pqlx.npz" and reverse: continue cmap = _get_cmap(filename, reverse=reverse) cmaps[cmap.name] = cmap return cmaps # inject all colormaps into namespace
_globals = globals() _globals.update(_get_all_cmaps()) obspy_sequential = _globals["viridis"] obspy_sequential_r = _globals["viridis_r"] obspy_divergent = get_cmap("RdBu_r") obspy_divergent_r = get_cmap("RdBu") pqlx = _get_cmap("pqlx.npz")
[docs]def _colormap_plot_overview(colormap_names=( "viridis", "obspy_sequential", "viridis_white", "viridis_r", "obspy_sequential_r", "viridis_white_r", "obspy_divergent", "obspy_divergent_r", "pqlx")): """ Overview bar plot, adapted after http://scipy-cookbook.readthedocs.org/items/Matplotlib_Show_colormaps.html. """ import matplotlib.pyplot as plt import importlib cm = importlib.import_module("obspy.imaging.cm") plt.rc('text', usetex=False) a = np.outer(np.ones(1000), np.linspace(0, 1, 1000)) fig = plt.figure(figsize=(12, 6)) fig.subplots_adjust(top=0.9, bottom=0.15, left=0.11, right=0.89) extent = (0, 1, 0, 1) for i, name in enumerate(colormap_names): cmap = getattr(cm, name) ax = fig.add_subplot(len(colormap_names), 1, i + 1) ax.imshow(a, aspect='auto', cmap=cmap, origin="lower", extent=extent, interpolation="nearest") ax.set_ylabel(name, family="monospace", fontsize="large", ha="right", rotation="horizontal") for ax in fig.axes: plt.setp(ax.get_yticklabels(), visible=False) ax.yaxis.set_ticks_position("none") for ax in fig.axes[:-1]: plt.setp(ax.get_xticklabels(), visible=False) fig.tight_layout() plt.show()
[docs]def _colormap_plot_ppsd(cmaps): """ Plot for illustrating colormaps: PPSD. :param cmaps: list of :class:`~matplotlib.colors.Colormap` :rtype: None """ import matplotlib.pyplot as plt from obspy import read from obspy.signal import PPSD from obspy.io.xseed import Parser st = read("https://examples.obspy.org/BW.KW1..EHZ.D.2011.037") st += read("https://examples.obspy.org/BW.KW1..EHZ.D.2011.038") parser = Parser("https://examples.obspy.org/dataless.seed.BW_KW1") ppsd = PPSD(st[0].stats, metadata=parser) ppsd.add(st) for cmap in cmaps: ppsd.plot(cmap=cmap, show=False) plt.show()
[docs]def _colormap_plot_array_response(cmaps): """ Plot for illustrating colormaps: array response. :param cmaps: list of :class:`~matplotlib.colors.Colormap` :rtype: None """ import matplotlib.pyplot as plt from obspy.signal.array_analysis import array_transff_wavenumber # generate array coordinates coords = np.array([[10., 60., 0.], [200., 50., 0.], [-120., 170., 0.], [-100., -150., 0.], [30., -220., 0.]]) # coordinates in km coords /= 1000. # set limits for wavenumber differences to analyze klim = 40. kxmin = -klim kxmax = klim kymin = -klim kymax = klim kstep = klim / 100. # compute transfer function as a function of wavenumber difference transff = array_transff_wavenumber(coords, klim, kstep, coordsys='xy') # plot for cmap in cmaps: plt.figure() plt.pcolor(np.arange(kxmin, kxmax + kstep * 1.1, kstep) - kstep / 2., np.arange(kymin, kymax + kstep * 1.1, kstep) - kstep / 2., transff.T, cmap=cmap) plt.colorbar() plt.clim(vmin=0., vmax=1.) plt.xlim(kxmin, kxmax) plt.ylim(kymin, kymax) plt.show()
[docs]def _colormap_plot_cwt(cmaps): """ Plot for illustrating colormaps: cwt. :param cmaps: list of :class:`~matplotlib.colors.Colormap` :rtype: None """ import matplotlib.pyplot as plt from obspy import read from obspy.signal.tf_misfit import cwt tr = read()[0] npts = tr.stats.npts dt = tr.stats.delta t = np.linspace(0, dt * npts, npts) f_min = 1 f_max = 50 scalogram = cwt(tr.data, dt, 8, f_min, f_max) x, y = np.meshgrid( t, np.logspace(np.log10(f_min), np.log10(f_max), scalogram.shape[0])) for cmap in cmaps: fig = plt.figure() ax = fig.add_subplot(111) ax.pcolormesh(x, y, np.abs(scalogram), cmap=cmap) ax.set_xlabel("Time after %s [s]" % tr.stats.starttime) ax.set_ylabel("Frequency [Hz]") ax.set_yscale('log') ax.set_ylim(f_min, f_max) plt.show()
[docs]def _colormap_plot_similarity(cmaps): """ Plot for illustrating colormaps: similarity matrix. :param cmaps: list of :class:`~matplotlib.colors.Colormap` :rtype: None """ import matplotlib.pyplot as plt from future import standard_library standard_library.install_aliases() import io from urllib.request import urlopen url = "https://examples.obspy.org/dissimilarities.npz" with io.BytesIO(urlopen(url).read()) as fh, np.load(fh) as data: dissimilarity = data['dissimilarity'] for cmap in cmaps: plt.figure(figsize=(6, 5)) plt.subplot(1, 1, 1) plt.imshow(1 - dissimilarity, interpolation='nearest', cmap=cmap) plt.xlabel("Event number") plt.ylabel("Event number") cb = plt.colorbar() cb.set_label("Similarity") plt.show()
[docs]def _get_beamforming_example_stream(): # Load data from obspy import read from obspy.core.util import AttribDict from obspy.signal.invsim import corn_freq_2_paz st = read("https://examples.obspy.org/agfa.mseed") # Set PAZ and coordinates for all 5 channels st[0].stats.paz = AttribDict({ 'poles': [(-0.03736 - 0.03617j), (-0.03736 + 0.03617j)], 'zeros': [0j, 0j], 'sensitivity': 205479446.68601453, 'gain': 1.0}) st[0].stats.coordinates = AttribDict({ 'latitude': 48.108589, 'elevation': 0.450000, 'longitude': 11.582967}) st[1].stats.paz = AttribDict({ 'poles': [(-0.03736 - 0.03617j), (-0.03736 + 0.03617j)], 'zeros': [0j, 0j], 'sensitivity': 205479446.68601453, 'gain': 1.0}) st[1].stats.coordinates = AttribDict({ 'latitude': 48.108192, 'elevation': 0.450000, 'longitude': 11.583120}) st[2].stats.paz = AttribDict({ 'poles': [(-0.03736 - 0.03617j), (-0.03736 + 0.03617j)], 'zeros': [0j, 0j], 'sensitivity': 250000000.0, 'gain': 1.0}) st[2].stats.coordinates = AttribDict({ 'latitude': 48.108692, 'elevation': 0.450000, 'longitude': 11.583414}) st[3].stats.paz = AttribDict({ 'poles': [(-4.39823 + 4.48709j), (-4.39823 - 4.48709j)], 'zeros': [0j, 0j], 'sensitivity': 222222228.10910088, 'gain': 1.0}) st[3].stats.coordinates = AttribDict({ 'latitude': 48.108456, 'elevation': 0.450000, 'longitude': 11.583049}) st[4].stats.paz = AttribDict({ 'poles': [(-4.39823 + 4.48709j), (-4.39823 - 4.48709j), (-2.105 + 0j)], 'zeros': [0j, 0j, 0j], 'sensitivity': 222222228.10910088, 'gain': 1.0}) st[4].stats.coordinates = AttribDict({ 'latitude': 48.108730, 'elevation': 0.450000, 'longitude': 11.583157}) # Instrument correction to 1Hz corner frequency paz1hz = corn_freq_2_paz(1.0, damp=0.707) st.simulate(paz_remove='self', paz_simulate=paz1hz) return st
[docs]def _colormap_plot_beamforming_time(cmaps): """ Plot for illustrating colormaps: beamforming. :param cmaps: list of :class:`~matplotlib.colors.Colormap` :rtype: None """ import matplotlib.pyplot as plt import matplotlib.dates as mdates from obspy import UTCDateTime from obspy.signal.array_analysis import array_processing # Execute array_processing stime = UTCDateTime("20080217110515") etime = UTCDateTime("20080217110545") kwargs = dict( # slowness grid: X min, X max, Y min, Y max, Slow Step sll_x=-3.0, slm_x=3.0, sll_y=-3.0, slm_y=3.0, sl_s=0.03, # sliding window properties win_len=1.0, win_frac=0.05, # frequency properties frqlow=1.0, frqhigh=8.0, prewhiten=0, # restrict output semb_thres=-1e9, vel_thres=-1e9, timestamp='mlabday', stime=stime, etime=etime ) st = _get_beamforming_example_stream() out = array_processing(st, **kwargs) # Plot labels = ['rel.power', 'abs.power', 'baz', 'slow'] xlocator = mdates.AutoDateLocator() for cmap in cmaps: fig = plt.figure() for i, lab in enumerate(labels): ax = fig.add_subplot(4, 1, i + 1) ax.scatter(out[:, 0], out[:, i + 1], c=out[:, 1], alpha=0.6, edgecolors='none', cmap=cmap) ax.set_ylabel(lab) ax.set_xlim(out[0, 0], out[-1, 0]) ax.set_ylim(out[:, i + 1].min(), out[:, i + 1].max()) ax.xaxis.set_major_locator(xlocator) ax.xaxis.set_major_formatter(mdates.AutoDateFormatter(xlocator)) fig.suptitle('AGFA skyscraper blasting in Munich %s' % ( stime.strftime('%Y-%m-%d'), )) fig.autofmt_xdate() fig.subplots_adjust(left=0.15, top=0.95, right=0.95, bottom=0.2, hspace=0) plt.show()
[docs]def _colormap_plot_beamforming_polar(cmaps): """ Plot for illustrating colormaps: beamforming. :param cmaps: list of :class:`~matplotlib.colors.Colormap` :rtype: None """ import matplotlib.pyplot as plt from matplotlib.colorbar import ColorbarBase from matplotlib.colors import Normalize from obspy import UTCDateTime from obspy.signal.array_analysis import array_processing # Execute array_processing kwargs = dict( # slowness grid: X min, X max, Y min, Y max, Slow Step sll_x=-3.0, slm_x=3.0, sll_y=-3.0, slm_y=3.0, sl_s=0.03, # sliding window properties win_len=1.0, win_frac=0.05, # frequency properties frqlow=1.0, frqhigh=8.0, prewhiten=0, # restrict output semb_thres=-1e9, vel_thres=-1e9, stime=UTCDateTime("20080217110515"), etime=UTCDateTime("20080217110545") ) st = _get_beamforming_example_stream() out = array_processing(st, **kwargs) # make output human readable, adjust backazimuth to values between 0 and # 360 t, rel_power, abs_power, baz, slow = out.T baz[baz < 0.0] += 360 # choose number of fractions in plot (desirably 360 degree/N is an # integer!) num = 36 num2 = 30 abins = np.arange(num + 1) * 360. / num sbins = np.linspace(0, 3, num2 + 1) # sum rel power in bins given by abins and sbins hist, baz_edges, sl_edges = \ np.histogram2d(baz, slow, bins=[abins, sbins], weights=rel_power) # transform to radian baz_edges = np.radians(baz_edges) dh = abs(sl_edges[1] - sl_edges[0]) dw = abs(baz_edges[1] - baz_edges[0]) for cmap in cmaps: # add polar and colorbar axes fig = plt.figure(figsize=(8, 8)) cax = fig.add_axes([0.85, 0.2, 0.05, 0.5]) ax = fig.add_axes([0.10, 0.1, 0.70, 0.7], polar=True) ax.set_theta_direction(-1) ax.set_theta_zero_location("N") # circle through backazimuth for i, row in enumerate(hist): ax.bar(left=(i * dw) * np.ones(num2), height=dh * np.ones(num2), width=dw, bottom=dh * np.arange(num2), color=cmap(row / hist.max())) ax.set_xticks(np.linspace(0, 2 * np.pi, 4, endpoint=False)) ax.set_xticklabels(['N', 'E', 'S', 'W']) # set slowness limits ax.set_ylim(0, 3) [i.set_color('grey') for i in ax.get_yticklabels()] ColorbarBase(cax, cmap=cmap, norm=Normalize(vmin=hist.min(), vmax=hist.max())) plt.show()
if __name__ == '__main__': import doctest doctest.testmod(exclude_empty=True)