Source code for obspy.imaging.spectrogram

# -*- coding: utf-8 -*-
# ------------------------------------------------------------------
# Filename: spectrogram.py
#  Purpose: Plotting spectrogram of Seismograms.
#   Author: Christian Sippl, Moritz Beyreuther
#    Email: sippl@geophysik.uni-muenchen.de
#
# Copyright (C) 2008-2012 Christian Sippl
# --------------------------------------------------------------------
"""
Plotting spectrogram of seismograms.

:copyright:
    The ObsPy Development Team (devs@obspy.org)
:license:
    GNU Lesser General Public License, Version 3
    (https://www.gnu.org/copyleft/lesser.html)
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from future.builtins import *  # NOQA @UnusedWildImport

import math

import numpy as np
from matplotlib import mlab
from matplotlib.colors import Normalize

from obspy.imaging.cm import obspy_sequential


[docs]def _nearest_pow_2(x): """ Find power of two nearest to x >>> _nearest_pow_2(3) 2.0 >>> _nearest_pow_2(15) 16.0 :type x: float :param x: Number :rtype: Int :return: Nearest power of 2 to x """ a = math.pow(2, math.ceil(np.log2(x))) b = math.pow(2, math.floor(np.log2(x))) if abs(a - x) < abs(b - x): return a else: return b
[docs]def spectrogram(data, samp_rate, per_lap=0.9, wlen=None, log=False, outfile=None, fmt=None, axes=None, dbscale=False, mult=8.0, cmap=obspy_sequential, zorder=None, title=None, show=True, sphinx=False, clip=[0.0, 1.0]): """ Computes and plots spectrogram of the input data. :param data: Input data :type samp_rate: float :param samp_rate: Samplerate in Hz :type per_lap: float :param per_lap: Percentage of overlap of sliding window, ranging from 0 to 1. High overlaps take a long time to compute. :type wlen: int or float :param wlen: Window length for fft in seconds. If this parameter is too small, the calculation will take forever. If None, it defaults to (samp_rate/100.0). :type log: bool :param log: Logarithmic frequency axis if True, linear frequency axis otherwise. :type outfile: str :param outfile: String for the filename of output file, if None interactive plotting is activated. :type fmt: str :param fmt: Format of image to save :type axes: :class:`matplotlib.axes.Axes` :param axes: Plot into given axes, this deactivates the fmt and outfile option. :type dbscale: bool :param dbscale: If True 10 * log10 of color values is taken, if False the sqrt is taken. :type mult: float :param mult: Pad zeros to length mult * wlen. This will make the spectrogram smoother. :type cmap: :class:`matplotlib.colors.Colormap` :param cmap: Specify a custom colormap instance. If not specified, then the default ObsPy sequential colormap is used. :type zorder: float :param zorder: Specify the zorder of the plot. Only of importance if other plots in the same axes are executed. :type title: str :param title: Set the plot title :type show: bool :param show: Do not call `plt.show()` at end of routine. That way, further modifications can be done to the figure before showing it. :type sphinx: bool :param sphinx: Internal flag used for API doc generation, default False :type clip: [float, float] :param clip: adjust colormap to clip at lower and/or upper end. The given percentages of the amplitude range (linear or logarithmic depending on option `dbscale`) are clipped. """ import matplotlib.pyplot as plt # enforce float for samp_rate samp_rate = float(samp_rate) # set wlen from samp_rate if not specified otherwise if not wlen: wlen = samp_rate / 100. npts = len(data) # nfft needs to be an integer, otherwise a deprecation will be raised # XXX add condition for too many windows => calculation takes for ever nfft = int(_nearest_pow_2(wlen * samp_rate)) if nfft > npts: nfft = int(_nearest_pow_2(npts / 8.0)) if mult is not None: mult = int(_nearest_pow_2(mult)) mult = mult * nfft nlap = int(nfft * float(per_lap)) data = data - data.mean() end = npts / samp_rate # Here we call not plt.specgram as this already produces a plot # matplotlib.mlab.specgram should be faster as it computes only the # arrays # XXX mlab.specgram uses fft, would be better and faster use rfft specgram, freq, time = mlab.specgram(data, Fs=samp_rate, NFFT=nfft, pad_to=mult, noverlap=nlap) # db scale and remove zero/offset for amplitude if dbscale: specgram = 10 * np.log10(specgram[1:, :]) else: specgram = np.sqrt(specgram[1:, :]) freq = freq[1:] vmin, vmax = clip if vmin < 0 or vmax > 1 or vmin >= vmax: msg = "Invalid parameters for clip option." raise ValueError(msg) _range = float(specgram.max() - specgram.min()) vmin = specgram.min() + vmin * _range vmax = specgram.min() + vmax * _range norm = Normalize(vmin, vmax, clip=True) if not axes: fig = plt.figure() ax = fig.add_subplot(111) else: ax = axes # calculate half bin width halfbin_time = (time[1] - time[0]) / 2.0 halfbin_freq = (freq[1] - freq[0]) / 2.0 # argument None is not allowed for kwargs on matplotlib python 3.3 kwargs = {k: v for k, v in (('cmap', cmap), ('zorder', zorder)) if v is not None} if log: # pcolor expects one bin more at the right end freq = np.concatenate((freq, [freq[-1] + 2 * halfbin_freq])) time = np.concatenate((time, [time[-1] + 2 * halfbin_time])) # center bin time -= halfbin_time freq -= halfbin_freq # Log scaling for frequency values (y-axis) ax.set_yscale('log') # Plot times ax.pcolormesh(time, freq, specgram, norm=norm, **kwargs) else: # this method is much much faster! specgram = np.flipud(specgram) # center bin extent = (time[0] - halfbin_time, time[-1] + halfbin_time, freq[0] - halfbin_freq, freq[-1] + halfbin_freq) ax.imshow(specgram, interpolation="nearest", extent=extent, **kwargs) # set correct way of axis, whitespace before and after with window # length ax.axis('tight') ax.set_xlim(0, end) ax.grid(False) if axes: return ax ax.set_xlabel('Time [s]') ax.set_ylabel('Frequency [Hz]') if title: ax.set_title(title) if not sphinx: # ignoring all NumPy warnings during plot with np.errstate(all='ignore'): plt.draw() if outfile: if fmt: fig.savefig(outfile, format=fmt) else: fig.savefig(outfile) elif show: plt.show() else: return fig