Source code for obspy.realtime.rttrace

# -*- coding: utf-8 -*-
"""
Module for handling ObsPy RtTrace objects.

:copyright:
    The ObsPy Development Team (devs@obspy.org) & Anthony Lomax
:license:
    GNU Lesser General Public License, Version 3
    (https://www.gnu.org/copyleft/lesser.html)
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from future.builtins import *  # NOQA

import copy
import warnings

import numpy as np

from obspy import Trace
from obspy.core import Stats
from obspy.realtime import signal
from obspy.realtime.rtmemory import RtMemory


# dictionary to map given type-strings to processing functions keys must be all
# lower case - values are tuples: (function name, number of RtMemory objects)
REALTIME_PROCESS_FUNCTIONS = {
    'scale': (signal.scale, 0),
    'offset': (signal.offset, 0),
    'integrate': (signal.integrate, 1),
    'differentiate': (signal.differentiate, 1),
    'boxcar': (signal.boxcar, 1),
    'tauc': (signal.tauc, 2),
    'mwpintegral': (signal.mwpintegral, 1),
    'kurtosis': (signal.kurtosis, 3),
}


[docs]class RtTrace(Trace): """ An object containing data of a continuous series constructed dynamically from sequential data packets. New data packets may be periodically appended. Registered time-domain processes can be applied to the new data and the resulting trace will be left trimmed to maintain a specified maximum trace length. :type max_length: int, optional :param max_length: maximum trace length in seconds .. rubric:: Example RtTrace has been built to handle real time processing of periodically append data packets, such as adding and processing data requested from an SeedLink server. See :mod:`obspy.clients.seedlink` for further information. For the sake of simplicity we will just split data of an existing example file into multiple chucks (Trace objects) of about equal size (step 1 + 2) and append those chunks in a simple loop (step 4) into an RtTrace object. Additionally there are two real time processing functions registered to the RtTrace object (step 3) which will automatically process any appended data chunks. 1. Read first trace of example SAC data file and extract contained time offset and epicentral distance of an earthquake:: >>> from obspy.realtime import RtTrace >>> from obspy import read >>> from obspy.realtime.signal import calculate_mwp_mag >>> data_trace = read('/path/to/II.TLY.BHZ.SAC')[0] >>> len(data_trace) 12684 >>> ref_time_offset = data_trace.stats.sac.a >>> print(ref_time_offset) 301.506 >>> epicentral_distance = data_trace.stats.sac.gcarc >>> print(epicentral_distance) 30.0855 2. Split given trace into a list of three sub-traces:: >>> traces = data_trace / 3 >>> [len(tr) for tr in traces] [4228, 4228, 4228] 3. Assemble real time trace and register two processes:: >>> rt_trace = RtTrace() >>> rt_trace.register_rt_process('integrate') 1 >>> rt_trace.register_rt_process('mwpintegral', mem_time=240, ... ref_time=(data_trace.stats.starttime + ref_time_offset), ... max_time=120, gain=1.610210e+09) 2 4. Append and auto-process packet data into RtTrace:: >>> for tr in traces: ... processed_trace = rt_trace.append(tr, gap_overlap_check=True) ... >>> len(rt_trace) 12684 5. Some post processing to get Mwp:: >>> peak = np.amax(np.abs(rt_trace.data)) >>> print(peak) 0.136404 >>> mwp = calculate_mwp_mag(peak, epicentral_distance) >>> print(mwp) # doctest: +ELLIPSIS 8.78902911791... """ have_appended_data = False @classmethod
[docs] def rt_process_functions_to_string(cls): """ Return doc string for all predefined real-time processing functions. :rtype: str :return: String containing doc for all real-time processing functions. """ string = 'Real-time processing functions (use as: ' + \ 'RtTrace.register_rt_process(process_name, [parameter values])):\n' for key in REALTIME_PROCESS_FUNCTIONS: string += '\n' string += ' ' + (str(key) + ' ' + 80 * '-')[:80] string += str(REALTIME_PROCESS_FUNCTIONS[key][0].__doc__) return(string)
[docs] def __init__(self, max_length=None, *args, **kwargs): # @UnusedVariable """ Initializes an RtTrace. See :class:`obspy.core.trace.Trace` for all parameters. """ # set window length attribute if max_length is not None and max_length <= 0: raise ValueError("Input max_length out of bounds: %s" % max_length) self.max_length = max_length # initialize processing list self.processing = [] # initialize parent Trace with no data or header - all data must be # added using append super(RtTrace, self).__init__(data=np.array([]), header=None)
[docs] def __eq__(self, other): """ Implements rich comparison of RtTrace objects for "==" operator. Traces are the same, if both their data and stats are the same. """ # check if other object is a RtTrace if not isinstance(other, RtTrace): return False return super(RtTrace, self).__eq__(other)
[docs] def __add__(self, **kwargs): # @UnusedVariable """ Too ambiguous, throw an Error. .. seealso:: :meth:`obspy.realtime.rttrace.RtTrace.append`. """ msg = "Too ambiguous for realtime trace data. Try: RtTrace.append()" raise NotImplementedError(msg)
[docs] def append(self, trace, gap_overlap_check=False, verbose=False): """ Appends a Trace object to this RtTrace. Registered real-time processing will be applied to copy of appended Trace object before it is appended. This RtTrace will be truncated from the beginning to RtTrace.max_length, if specified. Sampling rate, data type and trace.id of both traces must match. :type trace: :class:`~obspy.core.trace.Trace` :param trace: :class:`~obspy.core.trace.Trace` object to append to this RtTrace :type gap_overlap_check: bool, optional :param gap_overlap_check: Action to take when there is a gap or overlap between the end of this RtTrace and start of appended Trace: * If True, raise TypeError. * If False, all trace processing memory will be re-initialized to prevent false signal in processed trace. (default is ``True``). :type verbose: bool, optional :param verbose: Print additional information to stdout :return: NumPy :class:`~numpy.ndarray` object containing processed trace data from appended Trace object. """ if not isinstance(trace, Trace): # only add Trace objects raise TypeError("Only obspy.core.trace.Trace objects are allowed") # sanity checks if self.have_appended_data: # check id if self.get_id() != trace.get_id(): raise TypeError("Trace ID differs:", self.get_id(), trace.get_id()) # check sample rate if self.stats.sampling_rate != trace.stats.sampling_rate: raise TypeError("Sampling rate differs:", self.stats.sampling_rate, trace.stats.sampling_rate) # check calibration factor if self.stats.calib != trace.stats.calib: raise TypeError("Calibration factor differs:", self.stats.calib, trace.stats.calib) # check data type if self.data.dtype != trace.data.dtype: raise TypeError("Data type differs:", self.data.dtype, trace.data.dtype) # TODO: IMPORTANT? Should improve check for gaps and overlaps # and handle more elegantly # check times gap_or_overlap = False if self.have_appended_data: # delta = int(math.floor(\ # round((rt.stats.starttime - lt.stats.endtime) * sr, 5) )) - 1 diff = trace.stats.starttime - self.stats.endtime delta = diff * self.stats.sampling_rate - 1.0 if verbose: msg = "%s: Overlap/gap of (%g) samples in data: (%s) (%s) " + \ "diff=%gs dt=%gs" print(msg % (self.__class__.__name__, delta, self.stats.endtime, trace.stats.starttime, diff, self.stats.delta)) if delta < -0.1: msg = "Overlap of (%g) samples in data: (%s) (%s) diff=%gs" + \ " dt=%gs" msg = msg % (-delta, self.stats.endtime, trace.stats.starttime, diff, self.stats.delta) if gap_overlap_check: raise TypeError(msg) gap_or_overlap = True if delta > 0.1: msg = "Gap of (%g) samples in data: (%s) (%s) diff=%gs" + \ " dt=%gs" msg = msg % (delta, self.stats.endtime, trace.stats.starttime, diff, self.stats.delta) if gap_overlap_check: raise TypeError(msg) gap_or_overlap = True if gap_or_overlap: msg += " - Trace processing memory will be re-initialized." warnings.warn(msg, UserWarning) else: # correct start time to pin absolute trace timing to start of # appended trace, this prevents slow drift of nominal trace # timing from absolute time when nominal sample rate differs # from true sample rate self.stats.starttime = \ self.stats.starttime + diff - self.stats.delta if verbose: print("%s: self.stats.starttime adjusted by: %gs" % (self.__class__.__name__, diff - self.stats.delta)) # first apply all registered processing to Trace for proc in self.processing: process_name, options, rtmemory_list = proc # if gap or overlap, clear memory if gap_or_overlap and rtmemory_list is not None: for n in range(len(rtmemory_list)): rtmemory_list[n] = RtMemory() # apply processing trace = trace.copy() dtype = trace.data.dtype if hasattr(process_name, '__call__'): # check if direct function call trace.data = process_name(trace.data, **options) else: # got predefined function func = REALTIME_PROCESS_FUNCTIONS[process_name.lower()][0] options['rtmemory_list'] = rtmemory_list trace.data = func(trace, **options) # assure dtype is not changed trace.data = np.require(trace.data, dtype=dtype) # if first data, set stats if not self.have_appended_data: self.data = np.array(trace.data) self.stats = Stats(header=trace.stats) self.have_appended_data = True return trace # handle all following data sets # fix Trace.__add__ parameters # TODO: IMPORTANT? Should check for gaps and overlaps and handle # more elegantly sum_trace = Trace.__add__( self, trace, method=0, interpolation_samples=0, fill_value='latest', sanity_checks=True) # Trace.__add__ returns new Trace, so update to this RtTrace self.data = sum_trace.data # left trim if data length exceeds max_length if self.max_length is not None: max_samples = int(self.max_length * self.stats.sampling_rate + 0.5) if np.size(self.data) > max_samples: starttime = self.stats.starttime + \ (np.size(self.data) - max_samples) / \ self.stats.sampling_rate self._ltrim(starttime, pad=False, nearest_sample=True, fill_value=None) return trace
[docs] def register_rt_process(self, process, **options): """ Adds real-time processing algorithm to processing list of this RtTrace. Processing function must be one of: %s. % REALTIME_PROCESS_FUNCTIONS.keys() or a non-recursive, time-domain NumPy or ObsPy function which takes a single array as an argument and returns an array :type process: str or function :param process: Specifies which processing function is added, e.g. ``"boxcar"`` or ``np.abs``` (functions without brackets). See :mod:`obspy.realtime.signal` for all predefined processing functions. :type options: dict, optional :param options: Required keyword arguments to be passed the respective processing function, e.g. ``width=100`` for ``'boxcar'`` process. See :mod:`obspy.realtime.signal` for all options. :rtype: int :return: Length of processing list after registering new processing function. """ # create process_name either from string or function name process_name = ("%s" % process).lower() # set processing entry for this process entry = False rtmemory_list = None if hasattr(process, '__call__'): # direct function call entry = (process, options, None) elif process_name in REALTIME_PROCESS_FUNCTIONS: # predefined function num = REALTIME_PROCESS_FUNCTIONS[process_name][1] if num: # make sure we have num new RtMemory instances rtmemory_list = [RtMemory() for _i in range(num)] entry = (process_name, options, rtmemory_list) else: # check if process name is contained within a predefined function, # e.g. 'int' for 'integrate' for key in REALTIME_PROCESS_FUNCTIONS: if not key.startswith(process_name): continue process_name = key num = REALTIME_PROCESS_FUNCTIONS[process_name][1] if num: # make sure we have num new RtMemory instances rtmemory_list = [RtMemory() for _i in range(num)] entry = (process_name, options, rtmemory_list) break if not entry: raise NotImplementedError("Can't register process %s" % (process)) # add process entry self.processing.append(entry) # add processing information to the stats dictionary proc_info = "realtime_process:%s:%s" % (process_name, options) self._internal_add_processing_info(proc_info) return len(self.processing)
[docs] def copy(self, *args, **kwargs): """ Returns a deepcopy of this RtTrace. """ # XXX: ugly hack to allow deepcopy of an RtTrace object containing # registered NumPy function (numpy.ufunc) calls temp = copy.copy(self.processing) self.processing = [] new = copy.deepcopy(self, *args, **kwargs) new.processing = temp return new
if __name__ == '__main__': import doctest doctest.testmod(exclude_empty=True)