Source code for obspy.signal.polarization

# -*- coding: utf-8 -*-
"""
Functions for polarization analysis.

:copyright:
    The ObsPy Development Team (devs@obspy.org)
:license:
    GNU Lesser General Public License, Version 3
    (https://www.gnu.org/copyleft/lesser.html)
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from future.builtins import *  # NOQA

import math
import warnings

import numpy as np
import scipy.odr
from scipy import signal
from scipy.optimize import fminbound

from obspy.signal.invsim import cosine_taper


[docs]def eigval(datax, datay, dataz, fk, normf=1.0): """ Polarization attributes of a signal. Computes the rectilinearity, the planarity and the eigenvalues of the given data which can be windowed or not. The time derivatives are calculated by central differences and the parameter ``fk`` describes the coefficients of the used polynomial. The values of ``fk`` depend on the order of the derivative you want to calculate. If you do not want to use derivatives you can simply use [1, 1, 1, 1, 1] for ``fk``. The algorithm is mainly based on the paper by [Jurkevics1988]_. The rest is just the numerical differentiation by central differences (carried out by the routine :func:`scipy.signal.lfilter(data, 1, fk)`). :param datax: Data of x component. Note this is most useful with windowed data, represented by a 2 dimensional array. First dimension is the window number, second dimension is the data. :type datax: :class:`~numpy.ndarray` :param datay: Data of y component. See description of ``datax``. :type datay: :class:`~numpy.ndarray` :param dataz: Data of z component. See description of ``datax``. :type dataz: :class:`~numpy.ndarray` :param fk: Coefficients of polynomial used to calculate the time derivatives. :type fk: list :param normf: Factor for normalization. :type normf: float :return: **leigenv1, leigenv2, leigenv3, rect, plan, dleigenv, drect, dplan** - Smallest eigenvalue, Intermediate eigenvalue, Largest eigenvalue, Rectilinearity, Planarity, Time derivative of eigenvalues, time derivative of rectilinearity, Time derivative of planarity. """ # The function is made for windowed data (two dimensional input). # However be nice and allow one dimensional input, see #919 datax = np.atleast_2d(datax) datay = np.atleast_2d(datay) dataz = np.atleast_2d(dataz) covmat = np.zeros([3, 3]) leigenv1 = np.zeros(datax.shape[0], dtype=np.float64) leigenv2 = np.zeros(datax.shape[0], dtype=np.float64) leigenv3 = np.zeros(datax.shape[0], dtype=np.float64) dleigenv = np.zeros([datax.shape[0], 3], dtype=np.float64) rect = np.zeros(datax.shape[0], dtype=np.float64) plan = np.zeros(datax.shape[0], dtype=np.float64) i = 0 for i in range(datax.shape[0]): covmat[0][0] = np.cov(datax[i, :], rowvar=False) covmat[0][1] = covmat[1][0] = np.cov(datax[i, :], datay[i, :], rowvar=False)[0, 1] covmat[0][2] = covmat[2][0] = np.cov(datax[i, :], dataz[i, :], rowvar=False)[0, 1] covmat[1][1] = np.cov(datay[i, :], rowvar=False) covmat[1][2] = covmat[2][1] = np.cov(dataz[i, :], datay[i, :], rowvar=False)[0, 1] covmat[2][2] = np.cov(dataz[i, :], rowvar=False) _eigvec, eigenval, _v = (np.linalg.svd(covmat)) eigenv = np.sort(eigenval) leigenv1[i] = eigenv[0] leigenv2[i] = eigenv[1] leigenv3[i] = eigenv[2] rect[i] = 1 - ((eigenv[1] + eigenv[0]) / (2 * eigenv[2])) plan[i] = 1 - ((2 * eigenv[0]) / (eigenv[1] + eigenv[2])) leigenv1 = leigenv1 / normf leigenv2 = leigenv2 / normf leigenv3 = leigenv3 / normf leigenv1_add = np.append(np.append([leigenv1[0]] * (np.size(fk) // 2), leigenv1), [leigenv1[np.size(leigenv1) - 1]] * (np.size(fk) // 2)) dleigenv1 = signal.lfilter(fk, 1, leigenv1_add) dleigenv[:, 0] = dleigenv1[len(fk) - 1:] leigenv2_add = np.append(np.append([leigenv2[0]] * (np.size(fk) // 2), leigenv2), [leigenv2[np.size(leigenv2) - 1]] * (np.size(fk) // 2)) dleigenv2 = signal.lfilter(fk, 1, leigenv2_add) dleigenv[:, 1] = dleigenv2[len(fk) - 1:] leigenv3_add = np.append(np.append([leigenv3[0]] * (np.size(fk) // 2), leigenv3), [leigenv3[np.size(leigenv3) - 1]] * (np.size(fk) // 2)) dleigenv3 = signal.lfilter(fk, 1, leigenv3_add) dleigenv[:, 2] = dleigenv3[len(fk) - 1:] rect_add = np.append(np.append([rect[0]] * (np.size(fk) // 2), rect), [rect[np.size(rect) - 1]] * (np.size(fk) // 2)) drect = signal.lfilter(fk, 1, rect_add) drect = drect[len(fk) - 1:] plan_add = np.append(np.append([plan[0]] * (np.size(fk) // 2), plan), [plan[np.size(plan) - 1]] * (np.size(fk) // 2)) dplan = signal.lfilter(fk, 1, plan_add) dplan = dplan[len(fk) - 1:] return leigenv1, leigenv2, leigenv3, rect, plan, dleigenv, drect, dplan
[docs]def flinn(stream, noise_thres=0): """ Computes the azimuth, incidence, rectilinearity and planarity after the eigenstructure decomposition method of [Flinn1965b]_. :param stream: ZNE sorted trace data :type stream: List of ZNE sorted numpy arrays :param noise_tresh: Variance of the noise sphere; data points are excluded when falling within the sphere of radius sqrt(noise_thres), default is set to 0. :type noise_thres: float :returns: azimuth, incidence, rectilinearity, and planarity """ mask = (stream[0][:] ** 2 + stream[1][:] ** 2 + stream[2][:] ** 2 ) > noise_thres x = np.zeros((3, mask.sum()), dtype=np.float64) # East x[0, :] = stream[2][mask] # North x[1, :] = stream[1][mask] # Z x[2, :] = stream[0][mask] covmat = np.cov(x) eigvec, eigenval, v = np.linalg.svd(covmat) # Rectilinearity defined after Montalbetti & Kanasewich, 1970 rect = 1.0 - np.sqrt(eigenval[1] / eigenval[0]) # Planarity defined after [Jurkevics1988]_ plan = 1.0 - (2.0 * eigenval[2] / (eigenval[1] + eigenval[0])) azimuth = math.degrees(math.atan2(eigvec[0][0], eigvec[1][0])) eve = np.sqrt(eigvec[0][0] ** 2 + eigvec[1][0] ** 2) incidence = math.degrees(math.atan2(eve, eigvec[2][0])) if azimuth < 0.0: azimuth = 360.0 + azimuth if incidence < 0.0: incidence += 180.0 if incidence > 90.0: incidence = 180.0 - incidence if azimuth > 180.0: azimuth -= 180.0 else: azimuth += 180.0 if azimuth > 180.0: azimuth -= 180.0 return azimuth, incidence, rect, plan
[docs]def instantaneous_frequency(data, sampling_rate): """ Simple function to estimate the instantaneous frequency based on the derivative of the data and the analytical (hilbert) data. :param data: The data array. :type data: :class:`numpy.ndarray` :param sampling_rate: The sampling rate in Hz. :type sampling_rate: float """ x = signal.hilbert(data) dx = np.gradient(x) * sampling_rate instf = (x.real * dx.imag - x.imag * dx.real) / \ (2 * math.pi * (abs(x) ** 2)) return instf
[docs]def vidale_adapt(stream, noise_thres, fs, flow, fhigh, spoint, stime, etime, adaptive=True): """ Adaptive window polarization analysis after [Vidale1986]_ with the modification of adapted analysis window estimated by estimating the instantaneous frequency. It returns the azimuth, incidence, rectilinearity planarity and ellipticity. :param stream: ZNE containing trace data :type stream: :class:`~obspy.core.stream.Stream` :param noise_thres: Variance of the noise sphere; data points are excluded when falling within the sphere of radius sqrt(noise_thres), Default = 0 :type noise_thres: float :param fs: sampling rate :type fs: float :param flow: lower frequency limit for analysis :type flow: float :param fhigh: upper frequency limit for analysis :type fhigh: float :param spoint: array with traces' individual start times in samples :type spoint: :class:`numpy.ndarray` :param stime: start time of the analysis :type stime: :class:`~obspy.core.utcdatetime.UTCDateTime` :param etime: end time for the analysis :type etime: :class:`~obspy.core.utcdatetime.UTCDateTime` :param adaptive: switch for adaptive window estimation (defaults to ``True``). If set to ``False``, the window will be estimated as ``3 * max(1/(fhigh-flow), 1/flow)``. :type adaptive: bool :returns: list of tuples containing azimuth, incidence, rectilinearity, planarity, and ellipticity """ w = 3.0 # sort for ZNE stream.sort(reverse=True) z = stream[0].data n = stream[1].data e = stream[2].data zi = instantaneous_frequency(z, fs) za = signal.hilbert(z) ni = instantaneous_frequency(n, fs) na = signal.hilbert(n) ei = instantaneous_frequency(e, fs) ea = signal.hilbert(e) res = [] offset = int(3 * fs / flow) covmat = np.zeros([3, 3], dtype=np.complex128) while True: if adaptive: adapt = int(3.0 * w * fs / (zi[offset] + ni[offset] + ei[offset])) # in order to account for errors in the inst freq estimation if adapt > int(3.0 * fs / flow): adapt = int(3.0 * fs / flow) elif adapt < int(3.0 * fs / fhigh): adapt = int(3.0 * fs / fhigh) # XXX: was adapt /= 2 adapt //= 2 adapt = (2 * adapt) + 1 else: adapt = max(int(3. * fs / (fhigh - flow)), int(3. * fs / flow)) newstart = stime + offset / fs if (newstart + (adapt / 2) / fs) > etime: break zx = za[int(spoint[2] + offset - adapt / 2): int(spoint[2] + offset + adapt / 2)] nx = na[int(spoint[1] + offset - adapt / 2): int(spoint[1] + offset + adapt / 2)] ex = ea[int(spoint[0] + offset - adapt / 2): int(spoint[0] + offset + adapt / 2)] zx -= zx.mean() nx -= nx.mean() ex -= ex.mean() mask = (stream[0][:] ** 2 + stream[1][:] ** 2 + stream[2][:] ** 2) > \ noise_thres xx = np.zeros((3, mask.sum()), dtype=np.complex128) # East xx[0, :] = ea # North xx[1, :] = na # Z xx[2, :] = za covmat = np.cov(xx) eigvec, eigenval, v = np.linalg.svd(covmat) # very similar to function flinn, possible could be unified def fun(x): return 1. - math.sqrt( ((eigvec[0][0] * (math.cos(x) + math.sin(x) * 1j)).real) ** 2 + ((eigvec[1][0] * (math.cos(x) + math.sin(x) * 1j)).real) ** 2 + ((eigvec[2][0] * (math.cos(x) + math.sin(x) * 1j)).real) ** 2) final = fminbound(fun, 0.0, math.pi, full_output=True) x = 1. - final[1] ellip = math.sqrt(1.0 - x ** 2) / x # rectilinearity defined after Montalbetti & Kanasewich, 1970 rect = 1. - np.sqrt(eigenval[1] / eigenval[0]) # planarity defined after [Jurkevics1988]_ plan = 1. - (2.0 * eigenval[2] / (eigenval[1] + eigenval[0])) azimuth = 180 * math.atan2(eigvec[0][0].real, eigvec[1][0].real) / \ math.pi eve = np.sqrt(eigvec[0][0].real ** 2 + eigvec[1][0].real ** 2) incidence = 180 * math.atan2(eve, eigvec[2][0].real) / math.pi if azimuth < 0.0: azimuth = 360.0 + azimuth if incidence < 0.0: incidence += 180.0 if incidence > 90.0: incidence = 180.0 - incidence if azimuth > 180.0: azimuth -= 180.0 else: azimuth += 180.0 if azimuth > 180.0: azimuth -= 180.0 res.append((newstart.timestamp, azimuth, incidence, rect, plan, ellip)) offset += 1 return res
[docs]def particle_motion_odr(stream, noise_thres=0): """ Computes the orientation of the particle motion vector based on an orthogonal regression algorithm. :param stream: ZNE sorted trace data :type stream: :class:`~obspy.core.stream.Stream` :param noise_tres: variance of the noise sphere; data points are excluded when falling within the sphere of radius sqrt(noise_thres) :type noise_thres: float :returns: azimuth, incidence, error of azimuth, error of incidence """ z = [] n = [] e = [] comp, npts = np.shape(stream) for i in range(0, npts): if (stream[0][i] ** 2 + stream[1][i] ** 2 + stream[2][i] ** 2) \ > noise_thres: z.append(stream[0][i]) n.append(stream[1][i]) e.append(stream[2][i]) def fit_func(beta, x): # XXX: Eventually this is correct: return beta[0] * x + beta[1] return beta[0] * x data = scipy.odr.Data(e, n) model = scipy.odr.Model(fit_func) odr = scipy.odr.ODR(data, model, beta0=[1.]) out = odr.run() az_slope = out.beta[0] az_error = out.sd_beta[0] n = np.asarray(n) e = np.asarray(e) z = np.asarray(z) r = np.sqrt(n ** 2 + e ** 2) data = scipy.odr.Data(r, abs(z)) model = scipy.odr.Model(fit_func) odr = scipy.odr.ODR(data, model, beta0=[1.0]) out = odr.run() in_slope = out.beta[0] in_error = out.sd_beta[0] azimuth = math.atan2(1.0, az_slope) incidence = math.atan2(1.0, in_slope) az_error = 1.0 / ((1.0 ** 2 + az_slope ** 2) * azimuth) * az_error # az_error = math.degrees(az_error) in_error = 1.0 / ((1.0 ** 2 + in_slope ** 2) * incidence) * in_error # in_error = math.degrees(in_error) azimuth = math.degrees(azimuth) incidence = math.degrees(incidence) if azimuth < 0.0: azimuth = 360.0 + azimuth if incidence < 0.0: incidence += 180.0 if incidence > 90.0: incidence = 180.0 - incidence if azimuth > 180.0: azimuth -= 180.0 else: azimuth += 180.0 if azimuth > 180.0: azimuth -= 180.0 return azimuth, incidence, az_error, in_error
[docs]def _get_s_point(stream, stime, etime): """ Function for computing the trace dependent start time in samples :param stime: time to start :type stime: :class:`~obspy.core.utcdatetime.UTCDateTime` :param etime: time to end :type etime: :class:`~obspy.core.utcdatetime.UTCDateTime` :returns: spoint, epoint """ slatest = stream[0].stats.starttime eearliest = stream[0].stats.endtime for tr in stream: if tr.stats.starttime >= slatest: slatest = tr.stats.starttime if tr.stats.endtime <= eearliest: eearliest = tr.stats.endtime nostat = len(stream) spoint = np.empty(nostat, dtype=np.int32) epoint = np.empty(nostat, dtype=np.int32) # now we have to adjust to the beginning of real start time if slatest > stime: msg = "Specified start time is before latest start time in stream" raise ValueError(msg) if eearliest < etime: msg = "Specified end time is after earliest end time in stream" raise ValueError(msg) for i in range(nostat): offset = int(((stime - slatest) / stream[i].stats.delta + 1.)) negoffset = int(((eearliest - etime) / stream[i].stats.delta + 1.)) diffstart = slatest - stream[i].stats.starttime frac, _ = math.modf(diffstart) spoint[i] = int(diffstart) if frac > stream[i].stats.delta * 0.25: msg = "Difference in start times exceeds 25% of sampling rate" warnings.warn(msg) spoint[i] += offset diffend = stream[i].stats.endtime - eearliest frac, _ = math.modf(diffend) epoint[i] = int(diffend) epoint[i] += negoffset return spoint, epoint
[docs]def polarization_analysis(stream, win_len, win_frac, frqlow, frqhigh, stime, etime, verbose=False, method="pm", var_noise=0.0, adaptive=True): """ Method carrying out polarization analysis with the [Flinn1965b]_, [Jurkevics1988]_, ParticleMotion, or [Vidale1986]_ algorithm. :param stream: 3 component input data. :type stream: :class:`~obspy.core.stream.Stream` :param win_len: Sliding window length in seconds. :type win_len: float :param win_frac: Fraction of sliding window to use for step. :type win_frac: float :param var_noise: resembles a sphere of noise in PM where the 3C is excluded :type var_noise: float :param frqlow: lower frequency. Only used for ``method='vidale'``. :type frqlow: float :param frqhigh: higher frequency. Only used for ``method='vidale'``. :type frqhigh: float :param stime: Start time of interest :type stime: :class:`obspy.core.utcdatetime.UTCDateTime` :param etime: End time of interest :type etime: :class:`obspy.core.utcdatetime.UTCDateTime` :param method: the method to use. one of ``"pm"``, ``"flinn"`` or ``"vidale"``. :type method: str :param adaptive: switch for adaptive window estimation (defaults to ``True``). If set to ``False``, the window will be estimated as ``3 * max(1/(fhigh-flow), 1/flow)``. :type adaptive: bool :rtype: dict :returns: Dictionary with keys ``"timestamp"`` (POSIX timestamp, can be used to initialize :class:`~obspy.core.utcdatetime.UTCDateTime` objects), ``"azimuth"``, ``"incidence"`` (incidence angle) and additional keys depending on used method: ``"azimuth_error"`` and ``"incidence_error"`` (for method ``"pm"``), ``"rectilinearity"`` and ``"planarity"`` (for methods ``"flinn"`` and ``"vidale"``) and ``"ellipticity"`` (for method ``"flinn"``). Under each key a :class:`~numpy.ndarray` is stored, giving the respective values corresponding to the ``"timestamp"`` :class:`~numpy.ndarray`. """ if method.lower() not in ["pm", "flinn", "vidale"]: msg = "Invalid method ('%s')" % method raise ValueError(msg) res = [] if stream.get_gaps(): msg = 'Input stream must not include gaps:\n' + str(stream) raise ValueError(msg) if len(stream) != 3: msg = 'Input stream expected to be three components:\n' + str(stream) raise ValueError(msg) # check that sampling rates do not vary fs = stream[0].stats.sampling_rate if len(stream) != len(stream.select(sampling_rate=fs)): msg = "sampling rates of traces in stream are not equal" raise ValueError(msg) if verbose: print("stream contains following traces:") print(stream) print("stime = " + str(stime) + ", etime = " + str(etime)) spoint, _epoint = _get_s_point(stream, stime, etime) if method.lower() == "vidale": res = vidale_adapt(stream, var_noise, fs, frqlow, frqhigh, spoint, stime, etime) else: nsamp = int(win_len * fs) nstep = int(nsamp * win_frac) newstart = stime tap = cosine_taper(nsamp, p=0.22) offset = 0 while (newstart + (nsamp + nstep) / fs) < etime: try: for i, tr in enumerate(stream): dat = tr.data[spoint[i] + offset: spoint[i] + offset + nsamp] dat = (dat - dat.mean()) * tap if tr.stats.channel[-1].upper() == "Z": z = dat.copy() elif tr.stats.channel[-1].upper() == "N": n = dat.copy() elif tr.stats.channel[-1].upper() == "E": e = dat.copy() else: msg = "Unexpected channel code '%s'" % tr.stats.channel raise ValueError(msg) data = [z, n, e] except IndexError: break # we plot against the centre of the sliding window if method.lower() == "pm": azimuth, incidence, error_az, error_inc = \ particle_motion_odr(data, var_noise) res.append(np.array([newstart.timestamp + float(nstep) / fs, azimuth, incidence, error_az, error_inc])) if method.lower() == "flinn": azimuth, incidence, reclin, plan = flinn(data, var_noise) res.append(np.array([newstart.timestamp + float(nstep) / fs, azimuth, incidence, reclin, plan])) if verbose: print(newstart, newstart + nsamp / fs, res[-1][1:]) offset += nstep newstart += float(nstep) / fs res = np.array(res) result_dict = {"timestamp": res[:, 0], "azimuth": res[:, 1], "incidence": res[:, 2]} if method.lower() == "pm": result_dict["azimuth_error"] = res[:, 3] result_dict["incidence_error"] = res[:, 4] elif method.lower() == "vidale": result_dict["rectilinearity"] = res[:, 3] result_dict["planarity"] = res[:, 4] result_dict["ellipticity"] = res[:, 5] elif method.lower() == "flinn": result_dict["rectilinearity"] = res[:, 3] result_dict["planarity"] = res[:, 4] return result_dict
if __name__ == "__main__": import doctest doctest.testmod(exclude_empty=True)