# -*- coding: utf-8 -*-
"""
Functions for polarization analysis.
:copyright:
The ObsPy Development Team (devs@obspy.org)
:license:
GNU Lesser General Public License, Version 3
(https://www.gnu.org/copyleft/lesser.html)
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from future.builtins import * # NOQA
import math
import warnings
import numpy as np
import scipy.odr
from scipy import signal
from scipy.optimize import fminbound
from obspy.signal.invsim import cosine_taper
[docs]def eigval(datax, datay, dataz, fk, normf=1.0):
"""
Polarization attributes of a signal.
Computes the rectilinearity, the planarity and the eigenvalues of the given
data which can be windowed or not.
The time derivatives are calculated by central differences and the
parameter ``fk`` describes the coefficients of the used polynomial. The
values of ``fk`` depend on the order of the derivative you want to
calculate. If you do not want to use derivatives you can simply use
[1, 1, 1, 1, 1] for ``fk``.
The algorithm is mainly based on the paper by [Jurkevics1988]_. The rest is
just the numerical differentiation by central differences (carried out by
the routine :func:`scipy.signal.lfilter(data, 1, fk)`).
:param datax: Data of x component. Note this is most useful with
windowed data, represented by a 2 dimensional array. First
dimension is the window number, second dimension is the data.
:type datax: :class:`~numpy.ndarray`
:param datay: Data of y component. See description of ``datax``.
:type datay: :class:`~numpy.ndarray`
:param dataz: Data of z component. See description of ``datax``.
:type dataz: :class:`~numpy.ndarray`
:param fk: Coefficients of polynomial used to calculate the time
derivatives.
:type fk: list
:param normf: Factor for normalization.
:type normf: float
:return: **leigenv1, leigenv2, leigenv3, rect, plan, dleigenv, drect,
dplan** - Smallest eigenvalue, Intermediate eigenvalue, Largest
eigenvalue, Rectilinearity, Planarity, Time derivative of eigenvalues,
time derivative of rectilinearity, Time derivative of planarity.
"""
# The function is made for windowed data (two dimensional input).
# However be nice and allow one dimensional input, see #919
datax = np.atleast_2d(datax)
datay = np.atleast_2d(datay)
dataz = np.atleast_2d(dataz)
covmat = np.zeros([3, 3])
leigenv1 = np.zeros(datax.shape[0], dtype=np.float64)
leigenv2 = np.zeros(datax.shape[0], dtype=np.float64)
leigenv3 = np.zeros(datax.shape[0], dtype=np.float64)
dleigenv = np.zeros([datax.shape[0], 3], dtype=np.float64)
rect = np.zeros(datax.shape[0], dtype=np.float64)
plan = np.zeros(datax.shape[0], dtype=np.float64)
i = 0
for i in range(datax.shape[0]):
covmat[0][0] = np.cov(datax[i, :], rowvar=False)
covmat[0][1] = covmat[1][0] = np.cov(datax[i, :], datay[i, :],
rowvar=False)[0, 1]
covmat[0][2] = covmat[2][0] = np.cov(datax[i, :], dataz[i, :],
rowvar=False)[0, 1]
covmat[1][1] = np.cov(datay[i, :], rowvar=False)
covmat[1][2] = covmat[2][1] = np.cov(dataz[i, :], datay[i, :],
rowvar=False)[0, 1]
covmat[2][2] = np.cov(dataz[i, :], rowvar=False)
_eigvec, eigenval, _v = (np.linalg.svd(covmat))
eigenv = np.sort(eigenval)
leigenv1[i] = eigenv[0]
leigenv2[i] = eigenv[1]
leigenv3[i] = eigenv[2]
rect[i] = 1 - ((eigenv[1] + eigenv[0]) / (2 * eigenv[2]))
plan[i] = 1 - ((2 * eigenv[0]) / (eigenv[1] + eigenv[2]))
leigenv1 = leigenv1 / normf
leigenv2 = leigenv2 / normf
leigenv3 = leigenv3 / normf
leigenv1_add = np.append(np.append([leigenv1[0]] * (np.size(fk) // 2),
leigenv1),
[leigenv1[np.size(leigenv1) - 1]] *
(np.size(fk) // 2))
dleigenv1 = signal.lfilter(fk, 1, leigenv1_add)
dleigenv[:, 0] = dleigenv1[len(fk) - 1:]
leigenv2_add = np.append(np.append([leigenv2[0]] * (np.size(fk) // 2),
leigenv2),
[leigenv2[np.size(leigenv2) - 1]] *
(np.size(fk) // 2))
dleigenv2 = signal.lfilter(fk, 1, leigenv2_add)
dleigenv[:, 1] = dleigenv2[len(fk) - 1:]
leigenv3_add = np.append(np.append([leigenv3[0]] * (np.size(fk) // 2),
leigenv3),
[leigenv3[np.size(leigenv3) - 1]] *
(np.size(fk) // 2))
dleigenv3 = signal.lfilter(fk, 1, leigenv3_add)
dleigenv[:, 2] = dleigenv3[len(fk) - 1:]
rect_add = np.append(np.append([rect[0]] * (np.size(fk) // 2), rect),
[rect[np.size(rect) - 1]] * (np.size(fk) // 2))
drect = signal.lfilter(fk, 1, rect_add)
drect = drect[len(fk) - 1:]
plan_add = np.append(np.append([plan[0]] * (np.size(fk) // 2), plan),
[plan[np.size(plan) - 1]] * (np.size(fk) // 2))
dplan = signal.lfilter(fk, 1, plan_add)
dplan = dplan[len(fk) - 1:]
return leigenv1, leigenv2, leigenv3, rect, plan, dleigenv, drect, dplan
[docs]def flinn(stream, noise_thres=0):
"""
Computes the azimuth, incidence, rectilinearity and planarity after the
eigenstructure decomposition method of [Flinn1965b]_.
:param stream: ZNE sorted trace data
:type stream: List of ZNE sorted numpy arrays
:param noise_tresh: Variance of the noise sphere; data points are excluded
when falling within the sphere of radius sqrt(noise_thres),
default is set to 0.
:type noise_thres: float
:returns: azimuth, incidence, rectilinearity, and planarity
"""
mask = (stream[0][:] ** 2 + stream[1][:] ** 2 + stream[2][:] ** 2
) > noise_thres
x = np.zeros((3, mask.sum()), dtype=np.float64)
# East
x[0, :] = stream[2][mask]
# North
x[1, :] = stream[1][mask]
# Z
x[2, :] = stream[0][mask]
covmat = np.cov(x)
eigvec, eigenval, v = np.linalg.svd(covmat)
# Rectilinearity defined after Montalbetti & Kanasewich, 1970
rect = 1.0 - np.sqrt(eigenval[1] / eigenval[0])
# Planarity defined after [Jurkevics1988]_
plan = 1.0 - (2.0 * eigenval[2] / (eigenval[1] + eigenval[0]))
azimuth = math.degrees(math.atan2(eigvec[0][0], eigvec[1][0]))
eve = np.sqrt(eigvec[0][0] ** 2 + eigvec[1][0] ** 2)
incidence = math.degrees(math.atan2(eve, eigvec[2][0]))
if azimuth < 0.0:
azimuth = 360.0 + azimuth
if incidence < 0.0:
incidence += 180.0
if incidence > 90.0:
incidence = 180.0 - incidence
if azimuth > 180.0:
azimuth -= 180.0
else:
azimuth += 180.0
if azimuth > 180.0:
azimuth -= 180.0
return azimuth, incidence, rect, plan
[docs]def instantaneous_frequency(data, sampling_rate):
"""
Simple function to estimate the instantaneous frequency based on the
derivative of the data and the analytical (hilbert) data.
:param data: The data array.
:type data: :class:`numpy.ndarray`
:param sampling_rate: The sampling rate in Hz.
:type sampling_rate: float
"""
x = signal.hilbert(data)
dx = np.gradient(x) * sampling_rate
instf = (x.real * dx.imag - x.imag * dx.real) / \
(2 * math.pi * (abs(x) ** 2))
return instf
[docs]def vidale_adapt(stream, noise_thres, fs, flow, fhigh, spoint, stime, etime,
adaptive=True):
"""
Adaptive window polarization analysis after [Vidale1986]_ with the
modification of adapted analysis window estimated by estimating the
instantaneous frequency. It returns the azimuth, incidence, rectilinearity
planarity and ellipticity.
:param stream: ZNE containing trace data
:type stream: :class:`~obspy.core.stream.Stream`
:param noise_thres: Variance of the noise sphere; data points are excluded
when falling within the sphere of radius sqrt(noise_thres),
Default = 0
:type noise_thres: float
:param fs: sampling rate
:type fs: float
:param flow: lower frequency limit for analysis
:type flow: float
:param fhigh: upper frequency limit for analysis
:type fhigh: float
:param spoint: array with traces' individual start times in samples
:type spoint: :class:`numpy.ndarray`
:param stime: start time of the analysis
:type stime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param etime: end time for the analysis
:type etime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param adaptive: switch for adaptive window estimation (defaults to
``True``). If set to ``False``, the window will be estimated as
``3 * max(1/(fhigh-flow), 1/flow)``.
:type adaptive: bool
:returns: list of tuples containing azimuth, incidence, rectilinearity,
planarity, and ellipticity
"""
w = 3.0
# sort for ZNE
stream.sort(reverse=True)
z = stream[0].data
n = stream[1].data
e = stream[2].data
zi = instantaneous_frequency(z, fs)
za = signal.hilbert(z)
ni = instantaneous_frequency(n, fs)
na = signal.hilbert(n)
ei = instantaneous_frequency(e, fs)
ea = signal.hilbert(e)
res = []
offset = int(3 * fs / flow)
covmat = np.zeros([3, 3], dtype=np.complex128)
while True:
if adaptive:
adapt = int(3.0 * w * fs / (zi[offset] + ni[offset] + ei[offset]))
# in order to account for errors in the inst freq estimation
if adapt > int(3.0 * fs / flow):
adapt = int(3.0 * fs / flow)
elif adapt < int(3.0 * fs / fhigh):
adapt = int(3.0 * fs / fhigh)
# XXX: was adapt /= 2
adapt //= 2
adapt = (2 * adapt) + 1
else:
adapt = max(int(3. * fs / (fhigh - flow)), int(3. * fs / flow))
newstart = stime + offset / fs
if (newstart + (adapt / 2) / fs) > etime:
break
zx = za[int(spoint[2] + offset - adapt / 2):
int(spoint[2] + offset + adapt / 2)]
nx = na[int(spoint[1] + offset - adapt / 2):
int(spoint[1] + offset + adapt / 2)]
ex = ea[int(spoint[0] + offset - adapt / 2):
int(spoint[0] + offset + adapt / 2)]
zx -= zx.mean()
nx -= nx.mean()
ex -= ex.mean()
mask = (stream[0][:] ** 2 + stream[1][:] ** 2 + stream[2][:] ** 2) > \
noise_thres
xx = np.zeros((3, mask.sum()), dtype=np.complex128)
# East
xx[0, :] = ea
# North
xx[1, :] = na
# Z
xx[2, :] = za
covmat = np.cov(xx)
eigvec, eigenval, v = np.linalg.svd(covmat)
# very similar to function flinn, possible could be unified
def fun(x):
return 1. - math.sqrt(
((eigvec[0][0] * (math.cos(x) + math.sin(x) * 1j)).real) ** 2 +
((eigvec[1][0] * (math.cos(x) + math.sin(x) * 1j)).real) ** 2 +
((eigvec[2][0] * (math.cos(x) + math.sin(x) * 1j)).real) ** 2)
final = fminbound(fun, 0.0, math.pi, full_output=True)
x = 1. - final[1]
ellip = math.sqrt(1.0 - x ** 2) / x
# rectilinearity defined after Montalbetti & Kanasewich, 1970
rect = 1. - np.sqrt(eigenval[1] / eigenval[0])
# planarity defined after [Jurkevics1988]_
plan = 1. - (2.0 * eigenval[2] / (eigenval[1] + eigenval[0]))
azimuth = 180 * math.atan2(eigvec[0][0].real, eigvec[1][0].real) / \
math.pi
eve = np.sqrt(eigvec[0][0].real ** 2 + eigvec[1][0].real ** 2)
incidence = 180 * math.atan2(eve, eigvec[2][0].real) / math.pi
if azimuth < 0.0:
azimuth = 360.0 + azimuth
if incidence < 0.0:
incidence += 180.0
if incidence > 90.0:
incidence = 180.0 - incidence
if azimuth > 180.0:
azimuth -= 180.0
else:
azimuth += 180.0
if azimuth > 180.0:
azimuth -= 180.0
res.append((newstart.timestamp, azimuth, incidence, rect, plan, ellip))
offset += 1
return res
[docs]def particle_motion_odr(stream, noise_thres=0):
"""
Computes the orientation of the particle motion vector based on an
orthogonal regression algorithm.
:param stream: ZNE sorted trace data
:type stream: :class:`~obspy.core.stream.Stream`
:param noise_tres: variance of the noise sphere; data points are excluded
when falling within the sphere of radius sqrt(noise_thres)
:type noise_thres: float
:returns: azimuth, incidence, error of azimuth, error of incidence
"""
z = []
n = []
e = []
comp, npts = np.shape(stream)
for i in range(0, npts):
if (stream[0][i] ** 2 + stream[1][i] ** 2 + stream[2][i] ** 2) \
> noise_thres:
z.append(stream[0][i])
n.append(stream[1][i])
e.append(stream[2][i])
def fit_func(beta, x):
# XXX: Eventually this is correct: return beta[0] * x + beta[1]
return beta[0] * x
data = scipy.odr.Data(e, n)
model = scipy.odr.Model(fit_func)
odr = scipy.odr.ODR(data, model, beta0=[1.])
out = odr.run()
az_slope = out.beta[0]
az_error = out.sd_beta[0]
n = np.asarray(n)
e = np.asarray(e)
z = np.asarray(z)
r = np.sqrt(n ** 2 + e ** 2)
data = scipy.odr.Data(r, abs(z))
model = scipy.odr.Model(fit_func)
odr = scipy.odr.ODR(data, model, beta0=[1.0])
out = odr.run()
in_slope = out.beta[0]
in_error = out.sd_beta[0]
azimuth = math.atan2(1.0, az_slope)
incidence = math.atan2(1.0, in_slope)
az_error = 1.0 / ((1.0 ** 2 + az_slope ** 2) * azimuth) * az_error
# az_error = math.degrees(az_error)
in_error = 1.0 / ((1.0 ** 2 + in_slope ** 2) * incidence) * in_error
# in_error = math.degrees(in_error)
azimuth = math.degrees(azimuth)
incidence = math.degrees(incidence)
if azimuth < 0.0:
azimuth = 360.0 + azimuth
if incidence < 0.0:
incidence += 180.0
if incidence > 90.0:
incidence = 180.0 - incidence
if azimuth > 180.0:
azimuth -= 180.0
else:
azimuth += 180.0
if azimuth > 180.0:
azimuth -= 180.0
return azimuth, incidence, az_error, in_error
[docs]def _get_s_point(stream, stime, etime):
"""
Function for computing the trace dependent start time in samples
:param stime: time to start
:type stime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param etime: time to end
:type etime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:returns: spoint, epoint
"""
slatest = stream[0].stats.starttime
eearliest = stream[0].stats.endtime
for tr in stream:
if tr.stats.starttime >= slatest:
slatest = tr.stats.starttime
if tr.stats.endtime <= eearliest:
eearliest = tr.stats.endtime
nostat = len(stream)
spoint = np.empty(nostat, dtype=np.int32)
epoint = np.empty(nostat, dtype=np.int32)
# now we have to adjust to the beginning of real start time
if slatest > stime:
msg = "Specified start time is before latest start time in stream"
raise ValueError(msg)
if eearliest < etime:
msg = "Specified end time is after earliest end time in stream"
raise ValueError(msg)
for i in range(nostat):
offset = int(((stime - slatest) / stream[i].stats.delta + 1.))
negoffset = int(((eearliest - etime) / stream[i].stats.delta + 1.))
diffstart = slatest - stream[i].stats.starttime
frac, _ = math.modf(diffstart)
spoint[i] = int(diffstart)
if frac > stream[i].stats.delta * 0.25:
msg = "Difference in start times exceeds 25% of sampling rate"
warnings.warn(msg)
spoint[i] += offset
diffend = stream[i].stats.endtime - eearliest
frac, _ = math.modf(diffend)
epoint[i] = int(diffend)
epoint[i] += negoffset
return spoint, epoint
[docs]def polarization_analysis(stream, win_len, win_frac, frqlow, frqhigh, stime,
etime, verbose=False, method="pm", var_noise=0.0,
adaptive=True):
"""
Method carrying out polarization analysis with the [Flinn1965b]_,
[Jurkevics1988]_, ParticleMotion, or [Vidale1986]_ algorithm.
:param stream: 3 component input data.
:type stream: :class:`~obspy.core.stream.Stream`
:param win_len: Sliding window length in seconds.
:type win_len: float
:param win_frac: Fraction of sliding window to use for step.
:type win_frac: float
:param var_noise: resembles a sphere of noise in PM where the 3C is
excluded
:type var_noise: float
:param frqlow: lower frequency. Only used for ``method='vidale'``.
:type frqlow: float
:param frqhigh: higher frequency. Only used for ``method='vidale'``.
:type frqhigh: float
:param stime: Start time of interest
:type stime: :class:`obspy.core.utcdatetime.UTCDateTime`
:param etime: End time of interest
:type etime: :class:`obspy.core.utcdatetime.UTCDateTime`
:param method: the method to use. one of ``"pm"``, ``"flinn"`` or
``"vidale"``.
:type method: str
:param adaptive: switch for adaptive window estimation (defaults to
``True``). If set to ``False``, the window will be estimated as
``3 * max(1/(fhigh-flow), 1/flow)``.
:type adaptive: bool
:rtype: dict
:returns: Dictionary with keys ``"timestamp"`` (POSIX timestamp, can be
used to initialize :class:`~obspy.core.utcdatetime.UTCDateTime`
objects), ``"azimuth"``, ``"incidence"`` (incidence angle) and
additional keys depending on used method: ``"azimuth_error"`` and
``"incidence_error"`` (for method ``"pm"``), ``"rectilinearity"`` and
``"planarity"`` (for methods ``"flinn"`` and ``"vidale"``) and
``"ellipticity"`` (for method ``"flinn"``). Under each key a
:class:`~numpy.ndarray` is stored, giving the respective values
corresponding to the ``"timestamp"`` :class:`~numpy.ndarray`.
"""
if method.lower() not in ["pm", "flinn", "vidale"]:
msg = "Invalid method ('%s')" % method
raise ValueError(msg)
res = []
if stream.get_gaps():
msg = 'Input stream must not include gaps:\n' + str(stream)
raise ValueError(msg)
if len(stream) != 3:
msg = 'Input stream expected to be three components:\n' + str(stream)
raise ValueError(msg)
# check that sampling rates do not vary
fs = stream[0].stats.sampling_rate
if len(stream) != len(stream.select(sampling_rate=fs)):
msg = "sampling rates of traces in stream are not equal"
raise ValueError(msg)
if verbose:
print("stream contains following traces:")
print(stream)
print("stime = " + str(stime) + ", etime = " + str(etime))
spoint, _epoint = _get_s_point(stream, stime, etime)
if method.lower() == "vidale":
res = vidale_adapt(stream, var_noise, fs, frqlow, frqhigh, spoint,
stime, etime)
else:
nsamp = int(win_len * fs)
nstep = int(nsamp * win_frac)
newstart = stime
tap = cosine_taper(nsamp, p=0.22)
offset = 0
while (newstart + (nsamp + nstep) / fs) < etime:
try:
for i, tr in enumerate(stream):
dat = tr.data[spoint[i] + offset:
spoint[i] + offset + nsamp]
dat = (dat - dat.mean()) * tap
if tr.stats.channel[-1].upper() == "Z":
z = dat.copy()
elif tr.stats.channel[-1].upper() == "N":
n = dat.copy()
elif tr.stats.channel[-1].upper() == "E":
e = dat.copy()
else:
msg = "Unexpected channel code '%s'" % tr.stats.channel
raise ValueError(msg)
data = [z, n, e]
except IndexError:
break
# we plot against the centre of the sliding window
if method.lower() == "pm":
azimuth, incidence, error_az, error_inc = \
particle_motion_odr(data, var_noise)
res.append(np.array([newstart.timestamp + float(nstep) / fs,
azimuth, incidence, error_az, error_inc]))
if method.lower() == "flinn":
azimuth, incidence, reclin, plan = flinn(data, var_noise)
res.append(np.array([newstart.timestamp + float(nstep) / fs,
azimuth, incidence, reclin, plan]))
if verbose:
print(newstart, newstart + nsamp / fs, res[-1][1:])
offset += nstep
newstart += float(nstep) / fs
res = np.array(res)
result_dict = {"timestamp": res[:, 0],
"azimuth": res[:, 1],
"incidence": res[:, 2]}
if method.lower() == "pm":
result_dict["azimuth_error"] = res[:, 3]
result_dict["incidence_error"] = res[:, 4]
elif method.lower() == "vidale":
result_dict["rectilinearity"] = res[:, 3]
result_dict["planarity"] = res[:, 4]
result_dict["ellipticity"] = res[:, 5]
elif method.lower() == "flinn":
result_dict["rectilinearity"] = res[:, 3]
result_dict["planarity"] = res[:, 4]
return result_dict
if __name__ == "__main__":
import doctest
doctest.testmod(exclude_empty=True)