Source code for obspy.signal.regression

# -*- coding: utf-8 -*-
"""
Python Module for (Weighted) Linear Regression.

:authors:
    Thomas Lecocq (thomas.lecocq@seismology.be)

:copyright:
    The ObsPy Development Team (devs@obspy.org)
:license:
    GNU Lesser General Public License, Version 3
    (https://www.gnu.org/copyleft/lesser.html)
"""

import numpy as np
import scipy.optimize


[docs]def linear_regression(xdata, ydata, weights=None, p0=None, intercept_origin=True, **kwargs): """ Use linear least squares to fit a function, f, to data. This method is a generalized version of :func:`scipy.optimize.curve_fit`; allowing for Ordinary Least Square and Weighted Least Square regressions: * OLS through origin: ``linear_regression(xdata, ydata)`` * OLS with any intercept: ``linear_regression(xdata, ydata, intercept_origin=False)`` * WLS through origin: ``linear_regression(xdata, ydata, weights)`` * WLS with any intercept: ``linear_regression(xdata, ydata, weights, intercept_origin=False)`` If the expected values of slope (and intercept) are different from 0.0, provide the p0 value(s). :param xdata: The independent variable where the data is measured. :param ydata: The dependent data - nominally f(xdata, ...) :param weights: If not None, the uncertainties in the ydata array. These are used as weights in the least-squares problem. If ``None``, the uncertainties are assumed to be 1. In SciPy vocabulary, our weights are 1/sigma. :param p0: Initial guess for the parameters. If ``None``, then the initial values will all be 0 (Different from SciPy where all are 1) :param intercept_origin: If ``True``: solves ``y=a*x`` (default); if ``False``: solves ``y=a*x+b``. Extra keword arguments will be passed to :func:`scipy.optimize.curve_fit`. :rtype: tuple :returns: (slope, std_slope) if ``intercept_origin`` is ``True``; (slope, intercept, std_slope, std_intercept) if ``False``. """ if weights is not None: sigma = 1. / weights else: sigma = None if p0 is None: if intercept_origin: p0 = 0.0 else: p0 = [0.0, 0.0] if intercept_origin: p, cov = scipy.optimize.curve_fit(lambda x, a: a * x, xdata, ydata, p0, sigma=sigma, **kwargs) slope = p[0] std_slope = np.sqrt(cov[0, 0]) return slope, std_slope else: p, cov = scipy.optimize.curve_fit(lambda x, a, b: a * x + b, xdata, ydata, p0, sigma=sigma, **kwargs) slope, intercept = p std_slope = np.sqrt(cov[0, 0]) std_intercept = np.sqrt(cov[1, 1]) return slope, intercept, std_slope, std_intercept
if __name__ == '__main__': import doctest doctest.testmod(exclude_empty=True)