# -*- coding: utf-8 -*-
"""
Signal processing functions for RtMemory objects.
For sequential packet processing that requires memory (which includes recursive
filtering), each processing function (e.g., :mod:`obspy.realtime.signal`)
needs to manage the initialization and update of
:class:`~obspy.realtime.rtmemory.RtMemory` object(s), and needs to know when
and how to get values from this memory.
For example: Boxcar smoothing: For each new data point available past the end
of the boxcar, the original, un-smoothed data point value at the beginning of
the boxcar has to be subtracted from the running boxcar sum, this value may be
in a previous packet, so has to be retrieved from memory see
:func:`obspy.realtime.signal.boxcar`.
:copyright:
The ObsPy Development Team (devs@obspy.org), Anthony Lomax & Alessia Maggi
:license:
GNU Lesser General Public License, Version 3
(https://www.gnu.org/copyleft/lesser.html)
"""
import math
import sys
import numpy as np
from obspy.core.trace import Trace, UTCDateTime
from obspy.realtime.rtmemory import RtMemory
_PI = np.float64(math.pi)
_TWO_PI = 2.0 * math.pi
_MIN_FLOAT_VAL = 1.0e-20
[docs]
def offset(trace, offset=0.0, rtmemory_list=None): # @UnusedVariable
"""
Add the specified offset to the data.
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type offset: float, optional
:param offset: offset (default is 0.0)
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object
"""
if not isinstance(trace, Trace):
msg = "Trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
trace.data += offset
return trace.data
[docs]
def scale(trace, factor=1.0, rtmemory_list=None): # @UnusedVariable
"""
Scale array data samples by specified factor.
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type factor: float, optional
:param factor: Scale factor (default is 1.0).
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace.
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object.
"""
if not isinstance(trace, Trace):
msg = "trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
# XXX not sure how this should be for realtime analysis, here
# I assume, we do not want to change the underlying dtype
trace.data *= np.array(factor, dtype=trace.data.dtype)
return trace.data
[docs]
def integrate(trace, rtmemory_list=None):
"""
Apply simple rectangular integration to array data.
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace.
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object.
"""
if not isinstance(trace, Trace):
msg = "trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
if not rtmemory_list:
rtmemory_list = [RtMemory()]
sample = trace.data
if np.size(sample) < 1:
return sample
delta_time = trace.stats.delta
rtmemory = rtmemory_list[0]
# initialize memory object
if not rtmemory.initialized:
memory_size_input = 0
memory_size_output = 1
rtmemory.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
sum_ = np.float64(rtmemory.output[0])
for i in range(np.size(sample)):
sum_ += np.float64(sample[i]) * delta_time
sample[i] = sum_
rtmemory.output[0] = sum_
return sample
[docs]
def differentiate(trace, rtmemory_list=None):
"""
Apply simple differentiation to array data.
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace.
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object.
"""
if not isinstance(trace, Trace):
msg = "trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
if not rtmemory_list:
rtmemory_list = [RtMemory()]
sample = trace.data
if np.size(sample) < 1:
return sample
delta_time = trace.stats.delta
rtmemory = rtmemory_list[0]
# initialize memory object
if not rtmemory.initialized:
memory_size_input = 1
memory_size_output = 0
rtmemory.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
# avoid large diff value for first output sample
rtmemory.input[0] = sample[0]
previous_sample = rtmemory.input[0]
for i in range(np.size(sample)):
diff = (sample[i] - previous_sample) / delta_time
previous_sample = sample[i]
sample[i] = diff
rtmemory.input[0] = previous_sample
return sample
[docs]
def boxcar(trace, width, rtmemory_list=None):
"""
Apply boxcar smoothing to data in array sample.
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type width: int
:param width: Width in number of sample points for filter.
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace.
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object.
"""
if not isinstance(trace, Trace):
msg = "trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
if not width > 0:
msg = "width parameter not specified or < 1."
raise ValueError(msg)
if not rtmemory_list:
rtmemory_list = [RtMemory()]
sample = trace.data
rtmemory = rtmemory_list[0]
# initialize memory object
if not rtmemory.initialized:
memory_size_input = width
memory_size_output = 0
rtmemory.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
# initialize array for time-series results
new_sample = np.zeros(np.size(sample), sample.dtype)
i = 0
i1 = i - width
i2 = i # causal boxcar of width width
sum_ = 0.0
icount = 0
for i in range(np.size(sample)):
value = 0.0
if (icount == 0): # first pass, accumulate sum
for n in range(i1, i2 + 1):
if (n < 0):
value = rtmemory.input[width + n]
else:
value = sample[n]
sum_ += value
icount = icount + 1
else: # later passes, update sum
if ((i1 - 1) < 0):
value = rtmemory.input[width + (i1 - 1)]
else:
value = sample[(i1 - 1)]
sum_ -= value
if (i2 < 0):
value = rtmemory.input[width + i2]
else:
value = sample[i2]
sum_ += value
if (icount > 0):
new_sample[i] = (float)(sum_ / float(icount))
else:
new_sample[i] = 0.0
i1 = i1 + 1
i2 = i2 + 1
rtmemory.update_input(sample)
return new_sample
[docs]
def tauc(trace, width, rtmemory_list=None):
"""
Calculate instantaneous period in a fixed window (Tau_c).
.. seealso::
Implements equations 1-3 in [Allen2003]_ except use a fixed width
window instead of decay function.
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type width: int
:param width: Width in number of sample points for tauc window.
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace.
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object.
"""
if not isinstance(trace, Trace):
msg = "trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
if not width > 0:
msg = "tauc: width parameter not specified or < 1."
raise ValueError(msg)
if not rtmemory_list:
rtmemory_list = [RtMemory(), RtMemory()]
sample = trace.data
delta_time = trace.stats.delta
rtmemory = rtmemory_list[0]
rtmemory_dval = rtmemory_list[1]
sample_last = 0.0
# initialize memory object
if not rtmemory.initialized:
memory_size_input = width
memory_size_output = 1
rtmemory.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
sample_last = sample[0]
else:
sample_last = rtmemory.input[width - 1]
# initialize memory object
if not rtmemory_dval.initialized:
memory_size_input = width
memory_size_output = 1
rtmemory_dval.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
new_sample = np.zeros(np.size(sample), sample.dtype)
deriv = np.zeros(np.size(sample), sample.dtype)
# sample_last = rtmemory.input[width - 1]
sample_d = 0.0
deriv_d = 0.0
xval = rtmemory.output[0]
dval = rtmemory_dval.output[0]
for i in range(np.size(sample)):
sample_d = sample[i]
deriv_d = (sample_d - sample_last) / delta_time
index_begin = i - width
if (index_begin >= 0):
xval = xval - (sample[index_begin]) * (sample[index_begin]) \
+ sample_d * sample_d
dval = dval - deriv[index_begin] * deriv[index_begin] \
+ deriv_d * deriv_d
else:
index = i
xval = xval - rtmemory.input[index] * rtmemory.input[index] \
+ sample_d * sample_d
dval = dval \
- rtmemory_dval.input[index] * rtmemory_dval.input[index] \
+ deriv_d * deriv_d
deriv[i] = deriv_d
sample_last = sample_d
# if (xval > _MIN_FLOAT_VAL & & dval > _MIN_FLOAT_VAL) {
if (dval > _MIN_FLOAT_VAL):
new_sample[i] = _TWO_PI * math.sqrt(xval / dval)
else:
new_sample[i] = 0.0
# update memory
rtmemory.output[0] = xval
rtmemory.update_input(sample)
rtmemory_dval.output[0] = dval
rtmemory_dval.update_input(deriv)
return new_sample
# memory object indices for storing specific values
_AMP_AT_PICK = 0
_HAVE_USED_MEMORY = 1
_FLAG_COMPETE_MWP = 2
_INT_INT_SUM = 3
_POLARITY = 4
_MEMORY_SIZE_OUTPUT = 5
[docs]
def mwpintegral(trace, max_time, ref_time, mem_time=1.0, gain=1.0,
rtmemory_list=None):
"""
Calculate Mwp integral on a displacement trace.
.. seealso:: [Tsuboi1999]_ and [Tsuboi1995]_
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type max_time: float
:param max_time: Maximum time in seconds after ref_time to apply Mwp
integration.
:type ref_time: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param ref_time: Reference date and time of the data sample
(e.g. P pick time) at which to begin Mwp integration.
:type mem_time: float, optional
:param mem_time: Length in seconds of data memory (must be much larger
than maximum delay between pick declaration and pick time). Defaults
to ``1.0``.
:type gain: float, optional
:param gain: Nominal gain to convert input displacement trace to meters
of ground displacement. Defaults to ``1.0``.
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace.
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object.
"""
if not isinstance(trace, Trace):
msg = "trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
if not isinstance(ref_time, UTCDateTime):
msg = "ref_time must be an obspy.core.utcdatetime.UTCDateTime object."
raise ValueError(msg)
if not max_time >= 0:
msg = "max_time parameter not specified or < 0."
raise ValueError(msg)
if not rtmemory_list:
rtmemory_list = [RtMemory()]
sample = trace.data
delta_time = trace.stats.delta
rtmemory = rtmemory_list[0]
# initialize memory object
if not rtmemory.initialized:
memory_size_input = int(0.5 + mem_time * trace.stats.sampling_rate)
memory_size_output = _MEMORY_SIZE_OUTPUT
rtmemory.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
new_sample = np.zeros(np.size(sample), sample.dtype)
ioffset_pick = int(round(
(ref_time - trace.stats.starttime) *
trace.stats.sampling_rate))
ioffset_mwp_min = ioffset_pick
# set reference amplitude
if ioffset_mwp_min >= 0 and ioffset_mwp_min < trace.data.size:
# value in trace data array
rtmemory.output[_AMP_AT_PICK] = trace.data[ioffset_mwp_min]
elif ioffset_mwp_min >= -(np.size(rtmemory.input)) and ioffset_mwp_min < 0:
# value in memory array
index = ioffset_mwp_min + np.size(rtmemory.input)
rtmemory.output[_AMP_AT_PICK] = rtmemory.input[index]
elif ioffset_mwp_min < -(np.size(rtmemory.input)) \
and not rtmemory.output[_HAVE_USED_MEMORY]:
msg = "mem_time not large enough to buffer required input data."
raise ValueError(msg)
if ioffset_mwp_min < 0 and rtmemory.output[_HAVE_USED_MEMORY]:
ioffset_mwp_min = 0
else:
rtmemory.output[_HAVE_USED_MEMORY] = 1
# set Mwp end index corresponding to maximum duration
mwp_end_index = int(round(max_time / delta_time))
ioffset_mwp_max = mwp_end_index + ioffset_pick
if ioffset_mwp_max < trace.data.size:
rtmemory.output[_FLAG_COMPETE_MWP] = 1 # will complete
if ioffset_mwp_max > trace.data.size:
ioffset_mwp_max = trace.data.size
# apply double integration, check for extrema
mwp_amp_at_pick = rtmemory.output[_AMP_AT_PICK]
mwp_int_int_sum = rtmemory.output[_INT_INT_SUM]
polarity = rtmemory.output[_POLARITY]
amplitude = 0.0
for n in range(ioffset_mwp_min, ioffset_mwp_max):
if n >= 0:
amplitude = trace.data[n]
elif n >= -(np.size(rtmemory.input)):
# value in memory array
index = n + np.size(rtmemory.input)
amplitude = rtmemory.input[index]
else:
msg = "Error: Mwp: attempt to access rtmemory.input array of " + \
"size=%d at invalid index=%d: this should not happen!" % \
(np.size(rtmemory.input), n + np.size(rtmemory.input))
print(msg)
continue # should never reach here
disp_amp = amplitude - mwp_amp_at_pick
# check displacement polarity
if disp_amp >= 0.0: # pos
# check if past extremum
if polarity < 0: # passed from neg to pos displacement
mwp_int_int_sum *= -1.0
mwp_int_int_sum = 0
polarity = 1
elif disp_amp < 0.0: # neg
# check if past extremum
if polarity > 0: # passed from pos to neg displacement
mwp_int_int_sum = 0
polarity = -1
mwp_int_int_sum += (amplitude - mwp_amp_at_pick) * delta_time / gain
new_sample[n] = mwp_int_int_sum
rtmemory.output[_INT_INT_SUM] = mwp_int_int_sum
rtmemory.output[_POLARITY] = polarity
# update memory
rtmemory.update_input(sample)
return new_sample
MWP_INVALID = -9.9
# 4.213e19 - Tsuboi 1995, 1999
MWP_CONST = 4.0 * _PI # 4 PI
MWP_CONST *= 3400.0 # rho
MWP_CONST *= 7900.0 * 7900.0 * 7900.0 # Pvel**3
MWP_CONST *= 2.0 # FP average radiation pattern
MWP_CONST *= (10000.0 / 90.0) # distance deg -> km
MWP_CONST *= 1000.0 # distance km -> meters
# https://mail.python.org/pipermail/python-list/2010-February/567089.html, ff.
try:
FLOAT_MIN = sys.float_info.min
except AttributeError:
FLOAT_MIN = 1.1e-37
[docs]
def calculate_mwp_mag(peak, epicentral_distance):
"""
Calculate Mwp magnitude.
.. seealso:: [Tsuboi1999]_ and [Tsuboi1995]_
:type peak: float
:param peak: Peak value of integral of displacement seismogram.
:type epicentral_distance: float
:param epicentral_distance: Great-circle epicentral distance from station
in degrees.
:rtype: float
:returns: Calculated Mwp magnitude.
"""
moment = MWP_CONST * peak * epicentral_distance
mwp_mag = MWP_INVALID
if moment > FLOAT_MIN:
mwp_mag = (2.0 / 3.0) * (math.log10(moment) - 9.1)
return mwp_mag
[docs]
def kurtosis(trace, win=3.0, rtmemory_list=None):
"""
Apply recursive kurtosis calculation on data.
Recursive kurtosis is computed using the [ChassandeMottin2002]_
formulation adjusted to give the kurtosis of a Gaussian distribution = 0.0.
:type trace: :class:`~obspy.core.trace.Trace`
:param trace: :class:`~obspy.core.trace.Trace` object to append to this
RtTrace
:type win: float, optional
:param win: window length in seconds for the kurtosis (default is 3.0 s)
:type rtmemory_list: list of :class:`~obspy.realtime.rtmemory.RtMemory`,
optional
:param rtmemory_list: Persistent memory used by this process for specified
trace
:rtype: NumPy :class:`numpy.ndarray`
:return: Processed trace data from appended Trace object
"""
if not isinstance(trace, Trace):
msg = "Trace parameter must be an obspy.core.trace.Trace object."
raise ValueError(msg)
# if this is the first appended trace, the rtmemory_list will be None
if not rtmemory_list:
rtmemory_list = [RtMemory(), RtMemory(), RtMemory()]
# deal with case of empty trace
sample = trace.data
if np.size(sample) < 1:
return sample
# get simple info from trace
npts = len(sample)
dt = trace.stats.delta
# set some constants for the kurtosis calculation
c_1 = dt / float(win)
a1 = 1.0 - c_1
c_2 = (1.0 - a1 * a1) / 2.0
bias = -3 * c_1 - 3.0
# prepare the output array
kappa4 = np.empty(npts, sample.dtype)
# initialize the real-time memory needed to store
# the recursive kurtosis coefficients until the
# next bloc of data is added
rtmemory_mu1 = rtmemory_list[0]
rtmemory_mu2 = rtmemory_list[1]
rtmemory_k4_bar = rtmemory_list[2]
# there are three memory objects, one for each "last" coefficient
# that needs carrying over
# initialize mu1_last to 0
if not rtmemory_mu1.initialized:
memory_size_input = 1
memory_size_output = 0
rtmemory_mu1.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
# initialize mu2_last (sigma) to 1
if not rtmemory_mu2.initialized:
memory_size_input = 1
memory_size_output = 0
rtmemory_mu2.initialize(sample.dtype, memory_size_input,
memory_size_output, 1, 0)
# initialize k4_bar_last to 0
if not rtmemory_k4_bar.initialized:
memory_size_input = 1
memory_size_output = 0
rtmemory_k4_bar.initialize(sample.dtype, memory_size_input,
memory_size_output, 0, 0)
mu1_last = rtmemory_mu1.input[0]
mu2_last = rtmemory_mu2.input[0]
k4_bar_last = rtmemory_k4_bar.input[0]
# do recursive kurtosis
for i in range(npts):
mu1 = a1 * mu1_last + c_1 * sample[i]
dx2 = (sample[i] - mu1_last) * (sample[i] - mu1_last)
mu2 = a1 * mu2_last + c_2 * dx2
dx2 = dx2 / mu2_last
k4_bar = (1 + c_1 - 2 * c_1 * dx2) * k4_bar_last + c_1 * dx2 * dx2
kappa4[i] = k4_bar + bias
mu1_last = mu1
mu2_last = mu2
k4_bar_last = k4_bar
rtmemory_mu1.input[0] = mu1_last
rtmemory_mu2.input[0] = mu2_last
rtmemory_k4_bar.input[0] = k4_bar_last
return kappa4