obspy.signal.regression.linear_regression
- linear_regression(xdata, ydata, weights=None, p0=None, intercept_origin=True, **kwargs)[source]
Use linear least squares to fit a function, f, to data. This method is a generalized version of
scipy.optimize.curve_fit()
; allowing for Ordinary Least Square and Weighted Least Square regressions:OLS through origin:
linear_regression(xdata, ydata)
OLS with any intercept:
linear_regression(xdata, ydata, intercept_origin=False)
WLS through origin:
linear_regression(xdata, ydata, weights)
WLS with any intercept:
linear_regression(xdata, ydata, weights, intercept_origin=False)
If the expected values of slope (and intercept) are different from 0.0, provide the p0 value(s).
- Parameters:
xdata – The independent variable where the data is measured.
ydata – The dependent data - nominally f(xdata, …)
weights – If not None, the uncertainties in the ydata array. These are used as weights in the least-squares problem. If
None
, the uncertainties are assumed to be 1. In SciPy vocabulary, our weights are 1/sigma.p0 – Initial guess for the parameters. If
None
, then the initial values will all be 0 (Different from SciPy where all are 1)intercept_origin – If
True
: solvesy=a*x
(default); ifFalse
: solvesy=a*x+b
.
Extra keword arguments will be passed to
scipy.optimize.curve_fit()
.- Return type:
- Returns:
(slope, std_slope) if
intercept_origin
isTrue
; (slope, intercept, std_slope, std_intercept) ifFalse
.